ECS 315: Probability and Random Processes 2015/1
HW Solution 8 — Due: Nov 4, 9:19 AM (in tutorial session)

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)
The extra questions at the end are optional.

(c) Late submission will be heavily penalized.

Problem 1. Consider a random variable X whose pmf is

1/2, = =-1,
Px ('T): 1/47 r=0,1,
0, otherwise.

(e) Find py(y)
(f) Find EY.
(g) Find E[Y?].
Solution:
1
(a) BX = Spx (1) = (~1) x b4 (0) x (1) x = ~3 + 4 =| 1|
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() ELX?) = Satpx (2) = (-1 x 3+ 0P x  + (0* x f =4+ 5 =| 7]

2 2 _ 3 1\2 _ 3 |11
(0) VarX =E[X*) - BX)? =4 - (-})’ =§ - & =| 5|
(d) ox =vVVar X = g

(e) First, we build a table to see which values y of Y are possible from the values z of X:

z | px(x) y

1 12 [(—1)E=1
0| 1/4 | (02=0
1) 1/4 | (12=1

Therefore, the random variable Y can takes two values: 0 and 1. py(0) = px(0) = 1/4.
py (1) = px(—1) + px(1) =1/2 + 1/4 = 3/4. Therefore,

1/4, y=0,
Py (y)z 3/47 y:17
0, otherwise.

3
() EY = Y ypy (y) = (0) x 1 + (1) x 3 = . Alternatively, because Y = X2, we
y
automatically have E[Y] = E[X?]. Therefore, we can simply use the answer from part

(b).

. Alternatively,

=1 <]

(8) EIY?] = X upy (y) = (07 x 3+ (1) x & =
E[Y?] = E[X] :ZI4PX($):(—1)4>< %+(0)4X —+(1)4xi:%+i:%

Problem 2. For each of the following random variables, find EX and ox.
(a) X ~ Binomial(3,1/3)
(b) X ~ Poisson(3)

Solution:
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(a) From the lecture notes, we know that when X ~ Binomial(n, p), we have EX = np
and Var X :Ap(l —p). Here, n = 3 and p = 1/3. Therefore, EX = 3 x % = . Also,

% 2
because Var X = % (1 — %) = %, we have ox = vVar X = ]\3£ .

(b) From the lecture notes, we know that when X ~ Poisson(a), we have EX = « and
Var X = a. Here, @ = 3. Therefore, EX = . Also, because Var X = 3, we have

ox — \/g

Problem 3. Suppose X is a uniform discrete random variable on {—3,—2,—1,0,1,2,3,4}.
Find

Solution: All of the calculations in this question are simply plugging in numbers into
appropriate formulas.

Alternatively, we can find a formula for the general case of uniform random variable X
on the sets of integers from a to b. Note that there are n = b — a + 1 values that the random
variable can take. Hence, all of them has probability %

b b n(a+b a
() EX = Th A= 2 30  h= b x Mot — et


Prapun

Prapun

Prapun

Prapun
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(b) First, note that

ik(ls—

||
[+

W

P?‘

|

—_

)<(k+1);(k:—2))

é(z (k+1)k 1)—Zk(k—1)(k‘—2)>
%((Hl (b—1)—a(a—1)(a—2))

where the last equality comes from the fact that there are many terms in the first sum
that is repeated in the second sum and hence many cancellations.

Now,
b b b ,
ZkQ:Z(k:(k—l)+k):zk(k_1)+zk
= h=a k=a k=a
%Wﬂrl)b(b_1)—a(a—1)(a—2))+w
Therefore,
b
Zl&%:%((b+1)b(b—1)_a(a_1)(a_2))+a;b

k=a
1, 1 1 11,
L a4 -ab+-b+=b
39 T30 Ty

(c) Var X =E[X?] = (EX)? =5 (b—a)(b—a+2)=5(n—1)(n+1) = w21

12
(d) ox =+vVar X = ”21;1.

Problem 4. (Expectation + pmf + Gambling + Effect of miscalculation of probability) In
the eighteenth century, a famous French mathematician Jean Le Rond d’Alembert, author
of several works on probability, analyzed the toss of two coins. He reasoned that because
this experiment has THREE outcomes, (the number of heads that turns up in those two
tosses can be 0, 1, or 2), the chances of each must be 1 in 3. In other words, if we let N be
the number of heads that shows up, Alembert would say that

pn(n)=1/3 for N =0,1,2. (8.1)

[Mlodinow, 2008, p 50-51]
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We know that Alembert’s conclusion was wrong. His three outcomes are not equally
likely and hence classical probability formula can not be applied directly. The key is to
realize that there are FOUR outcomes which are equally likely. We should not consider 0, 1,
or 2 heads as the possible outcomes. There are in fact four equally likely outcomes: (heads,
heads), (heads, tails), (tails, heads), and (tails, tails). These are the 4 possibilities that make
up the sample space. The actual pmf for N is

1/4, n=0,2,
pnv(n) =< 1/2 n=1,
0 otherwise.

Suppose you travel back in time and meet Alembert. You could make the following bet
with Alembert to gain some easy money. The bet is that if the result of a toss of two coins
contains exactly one head, then he would pay you $150. Otherwise, you would pay him $100.

Let R be Alembert’s profit from this bet and Y be the your profit from this bet.

(a) Then, R = —150 if you win and R = 4100 otherwise. Use Alembert’s miscalculated
probabilities from (8.1)) to determine the pmf of R (from Alembert’s belief).

(b) Use Alembert’s miscalculated probabilities from (8.1)) (or the corresponding (miscalcu-
lated) pmf found in part (a)) to calculate ER, the expected profit for Alembert.
Remark: You should find that ER > 0 and hence Alembert will be quite happy to
accept your bet.

(c) Use the actual probabilities, to determine the pmf of R.

(d) Use the actual pmf, to determine ER.
Remark: You should find that ER < 0 and hence Alembert should not accept your
bet if he calculates the probabilities correctly.

(e) Note that Y = 4150 if you win and Y = —100 otherwise. Use the actual probabilities
to determine the pmf of Y.

(f) Use the actual probabilities, to determine EY'.

Remark: You should find that EY > 0. This is the amount of money that you expect
to gain each time that you play with Alembert. Of course, Alembert, who still believes
that his calculation is correct, will ask you to play this bet again and again believing
that he will make profit in the long run.

By miscalculating probabilities, one can make wrong decisions (and lose a lot of money)!

Solution:
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(a) P[R=—150] = P[N =1] and P[R=+100] = P[N #1] = P[N = 0] + P[N = 2.
So,

pn (1), r = —150,
pr(r) =< pn(0) +pN(2), 7= +100,
0, otherwise.

Using Alembert’s miscalculated pmf,

1/3, 7= —150,
pr(r) =< 2/3, r=+100,
0, otherwise
. . ) 50|
(b) From pg(r) in part (a), we have ER = Y pg(r) = 3 x (—150)+ 3 x 100 = 3 |® 16.67
(c) Again,
pn (1), r = —150,
pR(T) = pN(O) —|—pN(2), r = +100,
0, otherwise

Using the actual pmf,

) /r' — _150, 1

_|_l ,r.:_{_loo _ 57 T:—150 or +100,
47 . 0, otherwise.

otherwise

pr(r) =

O =0 =

Y

(d) From pg(r) in part (c), we have ER =Y pgr(r) = 1 x (=150) + 5 x 100 = ,

(e) Observe that Y = —R. Hence, using the answer from part (d), we have

(r) = %, r = +150 or — 100,
PRT) = 0, otherwise.

(f) Observe that Y = —R. Hence, EY = —ER. Using the actual probabilities, ER = —25
from part (d). Hence, EY =|+25].

Extra Questions

Here are some optional questions for those who want more practice.
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Problem 5. A random variables X has support containing only two numbers. Its expected
value is EX = 5. Its variance is Var X = 3. Give an example of the pmf of such a random
variable.

Solution: We first find ox = v/Var X = v/3. Recall that this is the average deviation
from the mean. Because X takes only two values, we can make them at exactly +£+v/3 from

the mean; that is
x1:5—\/§ and x2:5+\/§.

In which case, we automatically have EX = 5 and Var X = 3. Hence, one example of such
pmf is

(2) = L x=5+3
Px\%) = 0, otherwise

We can also try to find a general formula for z; and z,. If we let p = P [X = 23], then
qg=1—p = P[X =ux]. Given p, the values of z; and x5 must satisfy two conditions:
EX = m and Var X = ¢?. (In our case, m =5 and ¢ = 3.) From EX = m, we must have

T1q + Top = m; (8.2)
that is
m p
1 = — — To—.
q q

From Var X = ¢%, we have E [X?] = Var X + EX? = ¢ + m? and hence we must have
riq + x3p = 0 +m?. (8.3)
Substituting z; from into , we have
x5p — 2zomp + (pm* — qo®) =0
whose solutions are

_ 2mp+ V4Am2p2 — 4dp (pm? — qo?) _ 2mp+20./pq

mto,/-.

€2

Using (8.2)), we have

Therefore, for any given p, there are two pmfs:

l—p, z=m—o0,/75
px(r) =9 p, x:m—l—a,/lp%p

0, otherwise,
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or
1—p, a::m—km/ﬁ
pX(I'>: P, T=m-—o 1-p
Vo

0, otherwise.

Problem 6. For each of the following families of random variable X, find the value(s) of z
which maximize px(x). (This can be interpreted as the “mode” of X.)

(a) P(a)
(b) Binomial(n, p)
(¢) Go(B)

(d) Gi(B)
Remark [Y&G, p. 66]:

e For statisticians, the mode is the most common number in the collection of observa-
tions. There are as many or more numbers with that value than any other value. If
there are two or more numbers with this property, the collection of observations is
called multimodal. In probability theory, a mode of random variable X is a number
Tmode Satisfying

Px (Tmode) > px(x) for all .

e For statisticians, the median is a number in the middle of the set of numbers, in the
sense that an equal number of members of the set are below the median and above the
median. In probability theory, a median, X ,cgian, of random variable X is a number
that satisfies

P [X < Xmedian} =P [X > Xmedian] .

e Neither the mode nor the median of a random variable X need be unique. A random
variable can have several modes or medians.

Solution: We first note that when o« > 0, p € (0,1), n € N, and 5 € (0,1), the above
pmi’s will be strictly positive for some values of z. Hence, we can discard those x at which
px(z) = 0. The remaining points are all integers. To compare them, we will evaluate 7’?}({;;;)1).
(a) For Poisson pmf, we have

efcxa%l»l

px (1 +1) Gl Q@

=T

il

Notice that
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M>1ifandonlyifi<a—l.
px (1)
%:1ifandonlyif i=a—1.
px@HD 1 if and only if ¢ > a — 1.
px ()

Let 7 = o — 1. This implies that 7 is the place where things change. Moving from i
to 7 + 1, the probability strictly increases if © < 7. When ¢ > 7, the next probability
value (at 7 + 1) will decrease.

(i)

(i)

(iii)

Suppose a € (0,1), then &« — 1 < 0 and hence i > « — 1 for all i. (Note that ¢
are are nonnegative integers.) This implies that the pmf is a strictly decreasing
function and hence the maximum occurs at the first ¢ which is ¢ = 0.

Suppose o € N. Then, the pmf will be strictly increasing until we reaches i = a—1.
At which point, the next probability value is the same. Then, as we further
increase ¢, the pmf is strictly decreasing. Therefore, the maximum occurs at v — 1
and .

Suppose @ ¢ N and o > 1. Then we will have have any ¢ = o — 1. The
pmf will be strictly increasing where the last increase is from i = |a — 1] to
i+1=|a—1|+1=|al. After this, the pmf is strictly decreasing. Hence, the
maximum occurs at |a].

To summarize,

0, ae (0,1),
argmaxpy (r) = a—1and a, « is an integer,
’ la], a > 1 is not an integer.
(b) For binomial pmf, we have
. n! i+1 n—i—1 .
pX(z+1):mp+(1_p> _ (n—1)p
px (i) TP (L =p)" (i+1)(1-p)
Notice that

o % >lifandonlyif i<np—1+p=(n+1)p—1
o % =lifand only if i = (n+1)p— 1.

o XD 9 4fand only if i > (n+ 1)p — 1.

px (7)
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Let 7 = (n+1)p—1. This implies that 7 is the place where things change. Moving from
1 to 7 + 1, the probability strictly increases if i < 7. When ¢ > 7, the next probability
value (at ¢ + 1) will decrease.

(i) Suppose (n+1)p is an integer. The pmf will strictly increase as a function of i, and
then stays at the same value at i =7 = (n+1)p—landi+1=(n+1)p—1+1=
(n+ 1)p. Then, it will strictly decrease. So, the maximum occurs at (n+ 1)p — 1
and (n + 1)p.

(ii) Suppose (n + 1)p is not an integer. Then, there will not be any ¢ that is = 7.
Therefore, we only have the pmf strictly increases where the last increase occurs
when we goes from i = |7] to i+ 1 = |7] + 1. After this, the probability
is strictly decreasing. Hence, the maximum is unique and occur at |[7| + 1 =
[(n+1)p—1]+1=[(n+1)p].

To summarize,

| (n+1)p—1and (n+1)p, (n+1)pisan integer,
arg max py (v) = { |(n+1)p], (n+ 1)p is not an integer.

T

px (i+1)
(©) Hx®
smallest value of 4 which is @

= [ < 1. Hence, px(i) is strictly decreasing. The maximum occurs at the

(d) % = [ < 1. Hence, px(i) is strictly decreasing. The maximum occurs at the

smallest value of 7 which is .

Problem 7. An article in Information Security Technical Report [“Malicious Software—
Past, Present and Future” (2004, Vol. 9, pp. 618)] provided the data (shown in Figure [8.1))
on the top ten malicious software instances for 2002. The clear leader in the number of
registered incidences for the year 2002 was the Internet worm “Klez”. This virus was first
detected on 26 October 2001, and it has held the top spot among malicious software for the
longest period in the history of virology.

Suppose that 20 malicious software instances are reported. Assume that the malicious
sources can be assumed to be independent.

(a) What is the probability that at least one instance is “Klez”?
(b) What is the probability that three or more instances are “Klez”?

(c) What are the expected value and standard deviation of the number of “Klez” instances
among the 20 reported?
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Place Name % Instances
1 I-Worm.Klez 61.22%
2 I-Worm.Lentin 20.52%
3 I-Worm. Tanatos 2.09%
4 I-Worm.Badtransl| 1.31%
5 Macro.Word97.Thus 1.19%
6 I-Worm.Hybris 0.60%
7 I-Worm.Bridex 0.32%
8 I-Worm.Magistr 0.30%
9 Win95.CIH 0.27%

10 I-Worm.Sircam 0.24%

Figure 8.1: The 10 most widespread malicious programs for 2002 (Source—Kaspersky Labs).

Solution: Let N be the number of instances (among the 20) that are “Klez”. Then,
N ~binomial(n, p) where n = 20 and p = 0.6122.

(a) P[N>1]=1-P[N <1]=1-P[N =0] = 1—py(0) = 1—(})) x0.6122°x0.3878% ~
0.9999999941 = 1.

b
" PIN>3=1-P[N<3=1-(P[N=0]+P[N=1]+P[N =2

2

20 _

1-> (k ) (0.6122)"(0.3878)*° % ~ 0.999997
k=0

(¢) EN =np =20 x 0.6122 = 12.244.
on =V Var N = y/np(1 — p) = v/20 x 0.6122 x 0.3878 = 2.179.
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